Hello, here is the page
Transformations¶
Transformation and data augmentation for Frames class from the aloception.scene package
- class alodataset.transforms.AloTransform(same_on_sequence=True, same_on_frames=False)¶
Bases:
object
- sample_params()¶
- set_params()¶
- class alodataset.transforms.ColorJitter(*args, brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2, **kwargs)¶
Bases:
alodataset.transforms.AloTransform
,torchvision.transforms.transforms.ColorJitter
- apply(frame)¶
Apply the transformation on the frame
- Parameters
- frame: aloscene.Frame
- Returns
- n_frame: aloscene.Frame
- sample_params()¶
Sample a size from the list of possible sizes
- set_params(*params)¶
Given predefined params, set the params on the class
- training: bool¶
- class alodataset.transforms.Compose(transforms, *args, **kwargs)¶
Bases:
alodataset.transforms.AloTransform
- apply(frame)¶
Apply the transformation
- Parameters
- frame: Frame
Frame to apply the transformation on
- sample_params()¶
Sample and set params of all the child transformations into the self.transforms list.
- set_params(params)¶
Given predefined params, set the params to all the child transformations.
- class alodataset.transforms.CustomRandomColoring(gamma_r=(0.8, 1.2), brightness_r=(0.5, 2.0), colors_r=(0.5, 1.5), *args, **kwargs)¶
Bases:
alodataset.transforms.AloTransform
- apply(frame)¶
- sample_params()¶
- class alodataset.transforms.RandomCrop(size, *args, **kwargs)¶
Bases:
alodataset.transforms.AloTransform
- apply(frame)¶
- sample_params()¶
- set_params(top, left)¶
- class alodataset.transforms.RandomHorizontalFlip(p=0.5, *args, **kwargs)¶
Bases:
alodataset.transforms.AloTransform
- apply(frame)¶
Apply the transformation
- Parameters
- frame: Frame
Frame to apply the transformation on
- sample_params()¶
Sample a number between and 1. The transformation will be aply if number is < self.p
- set_params(_r)¶
Given predefined params, set the params on the class
- class alodataset.transforms.RandomResizeWithAspectRatio(sizes, max_size=None, *args, **kwargs)¶
Bases:
alodataset.transforms.AloTransform
- apply(frame)¶
Apply the transformation
- Parameters
- frame: Frame
Frame to apply the transformation on
- static get_size_with_aspect_ratio(frame, size, max_size=None)¶
Given a frame and a size this method compute a new size so that the largest side is equal to size and always < to max_size (if given).
- Parameters
- frameFrame
Frame to resize. Used only to get the width and the height of the target frame to resize.
- size: int
Desired size
- max_size: int
Maximum size of the largest side.
- sample_params()¶
Sample a size from the list of possible sizes
- set_params(_size)¶
Given predefined params, set the params on the class
- class alodataset.transforms.RandomSelect(transforms1, transforms2, p=0.5, *args, **kwargs)¶
Bases:
alodataset.transforms.AloTransform
- apply(frame)¶
Apply the transformation
- Parameters
- frame: Frame
Frame to apply the transformation on
- sample_params()¶
Sample a number between and 1. The first transformation will be aply if number is < self.p otherwise the second transformation is apply.
- set_params(_r, param1, param2)¶
Given predefined params, set the params on the class
- class alodataset.transforms.RandomSizeCrop(min_size, max_size, *args, **kwargs)¶
Bases:
alodataset.transforms.AloTransform
- apply(frame)¶
Apply the transformation
- Parameters
- frame: Frame
Frame to apply the transformation on
- sample_params()¶
Sample a number between and 1. The transformation will be aply if number is < self.p
- set_params(_w, _h)¶
Given predefined params, set the params on the class
- class alodataset.transforms.RealisticNoise(gaussian_std=0.02, shot_std=0.2, *args, **kwargs)¶
Bases:
alodataset.transforms.AloTransform
- apply(frame)¶
- sample_params()¶
No parameters to sample
- set_params()¶
No parameters to set
- class alodataset.transforms.Resize(size, *args, **kwargs)¶
Bases:
alodataset.transforms.AloTransform
- apply(frame)¶
Apply the transformation
- Parameters
- frame: Frame
Frame to apply the transformation on
- sample_params()¶
Sample a size from the list of possible sizes
- set_params(size)¶
Given predefined params, set the params on the class
- class alodataset.transforms.SpatialShift(size, *args, **kwargs)¶
Bases:
alodataset.transforms.AloTransform
- apply(frame)¶
Apply the transformation
- Parameters
- frame: Frame
Frame to apply the transformation on
- sample_params()¶
Sample a size from the list of possible sizes
- set_params(percentage)¶
Given predefined params, set the params on the class