Architecture¶
Backbone¶
Backbone modules for Deformable DETR
- class alonet.deformable_detr.backbone.Backbone(name, train_backbone, return_interm_layers, dilation)¶
Bases:
alonet.deformable_detr.backbone.BackboneBase
ResNet backbone with frozen BatchNorm.
- training: bool¶
- class alonet.deformable_detr.backbone.BackboneBase(backbone, train_backbone, return_interm_layers)¶
Bases:
alonet.detr.backbone.BackboneBase
Base class to define behavior of backbone
- training: bool¶
- class alonet.deformable_detr.backbone.Joiner(backbone, position_embedding)¶
Bases:
alonet.detr.backbone.Joiner
A sequential wrapper for backbone and position embedding.
- self.forward returns a tuple:
list of feature maps from backbone
list of position encoded feature maps
- training: bool¶
Transformer¶
- class alonet.deformable_detr.deformable_transformer.DeformableTransformer(d_model=256, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=1024, encoder=None, decoder=None, decoder_layer=None, encoder_layer=None, dropout=0.1, activation='relu', return_intermediate_dec=False, num_feature_levels=4, dec_n_points=4, enc_n_points=4, two_stage=False, two_stage_num_proposals=300)¶
Bases:
torch.nn.modules.module.Module
Transformer with Multiscale Deformable Attention
For more details: Deformable DETR https://arxiv.org/abs/2010.04159
Notes
This class can only be used with “cuda” device.
- forward(srcs, masks, pos_embeds, query_embed=None, **kwargs)¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- gen_encoder_output_proposals(memory, memory_padding_mask, spatial_shapes)¶
- get_proposal_pos_embed(proposals)¶
- get_valid_ratio(mask)¶
Get the ratio of (active mask shape / mask shape). This ratio will be use to create refenrence points for sampling to ensure those points in active zone.
- Parameters
- mask: (b, H, W)
- Returns
- valid_ratio: (b, 2)
- training: bool¶
- class alonet.deformable_detr.deformable_transformer.DeformableTransformerDecoder(decoder_layer, num_layers, return_intermediate=False)¶
Bases:
torch.nn.modules.module.Module
- decoder_forward(tgt, reference_points, src, src_spatial_shapes, src_level_start_index, src_valid_ratios, query_pos=None, src_padding_mask=None, tgt_key_padding_mask=None, **kwargs)¶
- forward(tgt, reference_points, src, src_spatial_shapes, src_level_start_index, src_valid_ratios, query_pos=None, src_padding_mask=None, tgt_key_padding_mask=None, decoder_outputs=None, **kwargs)¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- pre_process_tgt(tgt, query_pos, tgt_key_padding_mask, reference_points, **kwargs)¶
Pre process decoder inputs
- training: bool¶
- class alonet.deformable_detr.deformable_transformer.DeformableTransformerDecoderLayer(d_model=256, dim_feedforward=1024, dropout=0.1, activation='relu', n_levels=4, n_heads=8, n_points=4)¶
Bases:
torch.nn.modules.module.Module
- decoder_layer_forward(tgt, query_pos, reference_points, src, src_spatial_shapes, level_start_index, tgt_key_padding_mask=None, src_padding_mask=None, **kwargs)¶
Decoder forward layer
- forward(tgt, query_pos, reference_points, src, src_spatial_shapes, level_start_index, tgt_key_padding_mask=None, src_padding_mask=None, **kwargs)¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- forward_ffn(tgt)¶
- pre_process_tgt(tgt, query_pos, tgt_key_padding_mask, **kwargs)¶
Pre process decoder inputs
- training: bool¶
- static with_pos_embed(tensor, pos)¶
- class alonet.deformable_detr.deformable_transformer.DeformableTransformerEncoder(encoder_layer, num_layers)¶
Bases:
torch.nn.modules.module.Module
- forward(src, spatial_shapes, level_start_index, valid_ratios, pos=None, padding_mask=None, **kwargs)¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- static get_reference_points(spatial_shapes, valid_ratios, device)¶
Get the reference points used in sampling
- Parameters
- spatial_shapes: (num_levels, 2)
height and width of each feature level
- valid_ratios: (b, num_levels, 2)
ratio: [unpadded height / mask height, unpadded width / mask width]
- Returns
- reference_points: (b, num_points, num_levels, 2)
num_points = sum of height*width for each feature levels
- training: bool¶
- class alonet.deformable_detr.deformable_transformer.DeformableTransformerEncoderLayer(d_model=256, d_ffn=1024, dropout=0.1, activation='relu', n_levels=4, n_heads=8, n_points=4)¶
Bases:
torch.nn.modules.module.Module
- forward(src, pos, reference_points, spatial_shapes, level_start_index, padding_mask=None, **kwargs)¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- forward_ffn(src)¶
- training: bool¶
- static with_pos_embed(tensor, pos)¶
- alonet.deformable_detr.deformable_transformer.build_deforamble_transformer(args)¶