Training

Training

Pytorch Lightning Module to train models based on detr module

class alonet.detr.train.LitDetr(args=None, model=None, **kwargs)

Bases: pytorch_lightning.core.lightning.LightningModule

Parameters
argsNamespace, optional

Attributes stored in specific Namespace, by default None

weightsstr, optional

Weights name to load, by default None

gradient_clip_valfloat, optional

pytorch_lightning.trainer.trainer parameter. 0 means don’t clip, by default 0.1

accumulate_grad_batchesint, optional

Accumulates grads every k batches or as set up in the dict, by default 4

model_namestr, optional

Name use to define the model, by default “detr-r50”

modeltorch.nn, optional

Custom model to train

Notes

Arguments entered by the user (kwargs) will replace those stored in args attribute

static add_argparse_args(parent_parser, parser=None)

Add arguments to parent parser with default values

Parameters
parent_parserArgumentParser

Object to append new arguments

parserArgumentParser.argument_group, optional

Argument group to append the parameters, by default None

Returns
ArgumentParser

Object with new arguments concatenated

assert_input(frames, inference=False)

Check if input-frames have the correct format

Parameters
framesFrames

Input frames

inferencebool, optional

Check input from inference procedure, by default False

build_criterion(matcher=None, loss_ce_weight=1, loss_boxes_weight=5, loss_giou_weight=2, eos_coef=0.1, losses=['labels', 'boxes'], aux_loss_stage=6)

Build the default criterion

Parameters
matchertorch.nn, optional

One specfic matcher to use in criterion process, by default the output of build_matcher()

loss_ce_weightfloat, optional

Weight of cross entropy loss in total loss, by default 1

loss_boxes_weightfloat, optional

Weight of boxes loss in total loss, by default 5

loss_giou_weightfloat, optional

Weight of GIoU loss in total loss, by default 2

eos_coeffloat, optional

Background/End of the Sequence (EOS) coefficient, by default 0.1

losseslist, optional

List of losses to take into account in total loss, by default [“labels”, “boxes”]. Possible values: [“labels”, “boxes”, “masks”] (use the latest in segmentation tasks)

aux_loss_stageint, optional

Size of stages from aux_outputs key in forward ouputs, by default 6

Returns
DetrCriterion

Criterion use to train the model

build_matcher(cost_class=1, cost_boxes=5, cost_giou=2)

Build the default matcher

Parameters
cost_classfloat, optional

Weight of class cost in Hungarian Matcher, by default 1

cost_boxesfloat, optional

Weight of boxes cost in Hungarian Matcher, by default 5

cost_gioufloat, optional

Weight of GIoU cost in Hungarian Matcher, by default 2

Returns
DetrHungarianMatcher

Hungarian Matcher, as a Pytorch model

build_model(num_classes=91, aux_loss=True, weights=None)

Build the default model

Parameters
num_classesint, optional

Number of classes in embed layer, by default 91

aux_lossbool, optional

Return auxiliar outputs in forward output, by default True

weightsstr, optional

Path or id to load weights, by default None

Returns
detr

Pytorch model

Raises
Exception

Only detr-r50 models are supported yet.

callbacks(data_loader)

Given a data loader, this method will return the default callbacks of the training loop.

Parameters
data_loadertorch.utils.data.DataLoader

Dataloader to get a sample to use on object_detector_callback

Returns
List[Callbacks]

Callbacks use in train process

configure_optimizers()

AdamW optimizer configuration, using different learning rates for backbone and others parameters

Returns
torch.optim

AdamW optimizer to update weights

forward(frames)

Run a forward pass through the model.

Parameters
framesUnion[list, Frames]

List of frame without batch dimension or a Frame with the batch dimension

Returns
m_outputs: dict

A dict with the forward detr outputs.

inference(m_outputs)

Given the model forward outputs, this method will return an BoundingBoxes2D tensor.

Parameters
m_outputs: dict

Dict with the model forward outptus

Returns
List[BoundingBoxes2D]

Set of boxes for each batch

run_train(data_loader, args=None, project='detr', expe_name='detr_50', callbacks=None)

Train the model using pytorch lightning

Parameters
data_loadertorch.utils.data.DataLoader

Dataloader use in callbacks() function

projectstr, optional

Project name using to save checkpoints, by default “detr”

expe_namestr, optional

Specific experiment name to save checkpoints, by default “detr_50”

callbackslist, optional

List of callbacks to use, by default callbacks() output

argsNamespace, optional

Additional arguments use in training process, by default None

training: bool
training_step(frames, batch_idx)

Train the model for one step

Parameters
framesUnion[list, Frames]

List of frame without batch dimension or a Frame with the batch dimension

batch_idxint

Batch id given by Lightning

Returns
dict

Dictionary with the loss to optimize, m_outputs forward outputs and metrics to log.

validation_step(frames, batch_idx)

Run one step of validation

Parameters
framesUnion[list, Frames]

List of frame without batch dimension or a Frame with the batch dimension

batch_idxint

Batch id given by Lightning

Returns
dict

Dictionary with the loss to optimize, m_outputs forward outputs and metrics to log.

Criterion

This class computes the loss for DETR. The process happens in two steps:

  1. We compute hungarian assignment between ground truth boxes and the outputs of the model

  2. We supervise each pair of matched ground-truth / prediction (supervise class and box).

class alonet.detr.criterion.DetrCriterion(matcher, loss_ce_weight, loss_boxes_weight, loss_giou_weight, eos_coef, aux_loss_stage, losses)

Bases: torch.nn.modules.module.Module

Create the criterion.

Parameters
num_classes: int

number of object categories, omitting the special no-object category

matcher: nn.Module

module able to compute a matching between targets and proposed boxes

loss_ce_weight: float

Cross entropy class weight

loss_boxes_weight: float

Boxes loss l1 weight

loss_giou_weight: float

Boxes loss GIOU

eos_coef: float

relative classification weight applied to the no-object category

aux_loss_stage:

Number of auxialiry stage

losses: list

list of all the losses to be applied. See get_loss() for list of available losses.

forward(m_outputs, frames, matcher_frames=None, compute_statistical_metrics=False, **kwargs)

This performs the loss computation.

Parameters
outputsdict

Dict of tensors, see the output specification of the model for the format

targetsFrames

Target frames

compute_statistical_metricsbool

Whether to compute statistical data bout the model outputs/inputs, by default False

Returns
torch.tensor

Total loss as weighting of losses

dict

Individual losses

get_loss(loss, outputs, frames, indices, num_boxes, update_loss_map=None, **kwargs)

Compute a loss given the model outputs, the target frame, the results from the matcher and the number of total boxes accross the devices.

Parameters
lossstr

Name of the loss to compute

outputsdict

Detr model forward outputs

framesFrames

Trgat frame with boxes2d and labels

indices: list

List of tuple with predicted indices and target indices

num_boxes: torch.Tensor

Number of total target boxes

update_loss_mapdict

Append new loss function to take into account in total loss process, by default None

Returns
Dict

Losses of the loss procedure.

get_metrics(outputs, frames, indices, num_boxes, **kwargs)

Compute some usefull metrics related to the model performance

Parameters
outputsdict

Detr model forward outputs

framesFrames

Trgat frame with boxes2d and labels

indiceslist

List of tuple with predicted indices and target indices

num_boxestorch.Tensor

Number of total target boxes

Returns
metrics: dict
  • objectness_recall: Percentage of detect object among the GT object (class invariant)

  • recall : Percentage of detect class among all the GT class

  • objectness_true_pos: Among the positive prediction of the model. how much are really positive ? (class invariant)

  • precision: Among the positive prediction of the model. how much are well classify ?

  • true_neg: Among the negative predictions of the model, how much are really negative ?

  • slot_true_neg: Among all the negative slot, how may are predicted as negative ? (class invariant)

Notes

Important

The metrics described above do not reflect directly the true performance of the model. The are only directly corredlated with the loss & the hungarian used to train the model. Therefore, the computed recall, is NOT the recall, is not the true recall but the recall based on the SLOT & the hungarian choice. That being said, it is still a usefull information to monitor the training progress.

get_statistical_metrics(outputs, frames, indices, num_boxes, **kwargs)

Compute some usefull statistical metrics about the model outputs and the inputs.

Parameters
outputsdict

Detr model forward outputs

framesFrames

Target frame with boxes2d and labels

indiceslist

List of tuple with predicted indices and target indices

num_boxestorch.Tensor

Number of total target boxes

Returns
dict

Metrics

loss_boxes(outputs, frames, indices, num_boxes, **kwargs)

Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss

Parameters
outputsdict

Detr model forward outputs

framesFrames

Target frame with boxes2d and labels

indiceslist

List of tuple with predicted indices and target indices

num_boxestorch.Tensor

Number of total target boxes

loss_labels(outputs, frames, indices, num_boxes, **kwargs)

Compute the clasification loss

Parameters
outputsdict

Detr model forward outputs

framesFrames

Target frame with boxes2d and labels

indiceslist

List of tuple with predicted indices and target indices

num_boxestorch.Tensor

Number of total target boxes

training: bool

Matcher

Modules to compute the matching cost and solve the corresponding LSAP.

class alonet.detr.matcher.DetrHungarianMatcher(cost_class=1, cost_boxes=1, cost_giou=1)

Bases: torch.nn.modules.module.Module

This class computes an assignment between the targets and the predictions of the network

For efficiency reasons, the targets don’t include the no_object. Because of this, in general, there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are un-matched (and thus treated as non-objects).

forward(m_outputs, frames, **kwargs)

Performs the matching

Parameters
m_outputs: dict

Dict output of the alonet.detr.Detr model. This is a dict that contains at least these entries: “pred_logits”: Tensor of dim [batch_size, num_queries, num_classes] with the classification logits “pred_boxes”: Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates

frames: aloscene.Frame

Target frame with a set of boxes2d named : “gt_boxes_2d” with labels.

Returns
A list of size batch_size, containing tuples of (index_i, index_j) where:
  • index_i is the indices of the selected predictions (in order)

  • index_j is the indices of the corresponding selected targets (in order)

For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes)

hungarian(batch_cost_matrix, **kwargs)
hungarian_cost_class(tgt_boxes, m_outputs, **kwargs)

Compute the cost class for the Hungarina matcher

Parameters
m_outputs: dict

Dict output of the alonet.detr.Detr model. This is a dict that contains at least these entries: “pred_logits”: Tensor of dim [batch_size, num_queries, num_classes] with the classification logits “pred_boxes”: Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates

tgt_boxes: aloscene.BoundingBoxes2D

Target boxes2d across the batch

hungarian_cost_giou_boxes(tgt_boxes, m_outputs, **kwargs)

Compute GIOU cost between boxes

Parameters
m_outputs: dict

Dict output of the alonet.detr.Detr model. This is a dict that contains at least these entries: “pred_logits”: Tensor of dim [batch_size, num_queries, num_classes] with the classification logits “pred_boxes”: Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates

tgt_boxes: aloscene.BoundingBoxes2D

Target boxes2d across the batch

hungarian_cost_l1_boxes(tgt_boxes, m_outputs, **kwargs)

Compute l1 cost between boxes

Parameters
m_outputs: dict

Dict output of the alonet.detr.Detr model. This is a dict that contains at least these entries: “pred_logits”: Tensor of dim [batch_size, num_queries, num_classes] with the classification logits “pred_boxes”: Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates

tgt_boxes: aloscene.BoundingBoxes2D

Target boxes2d across the batch

training: bool
alonet.detr.matcher.build_matcher(args)

Callbacks

Detr Callback for object detection training that use frame as GT.

class alonet.detr.callbacks.DetrObjectDetectorCallback(*args, **kwargs)

Bases: alonet.callbacks.object_detector_callback.ObjectDetectorCallback

on_train_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx)

Called when the train batch ends.

on_validation_epoch_end(trainer, pl_module)

Called when the val epoch ends.