BoundingBoxes2D

class aloscene.bounding_boxes_2d.BoundingBoxes2D(x, boxes_format: str, absolute: bool, labels: Optional[Union[dict, aloscene.labels.Labels]] = None, frame_size=None, names=('N', None), *args, **kwargs)

Bases: aloscene.tensors.augmented_tensor.AugmentedTensor

Boxes2D Tensor.

FORMATS = ['xcyc', 'xyxy', 'yxyx']
GLOBAL_COLOR_SET = array([[2.99706296e-01, 1.12921613e-01, 4.46599072e-01],        [2.90879256e-01, 3.65610983e-01, 3.44392263e-01],        [1.20625557e-01, 3.50751731e-01, 8.67877079e-01],        [7.73737889e-01, 8.95049659e-02, 1.19576752e-01],        [9.79603274e-01, 9.57962473e-01, 5.83995094e-01],        [4.43676481e-01, 4.65893743e-01, 6.89661277e-01],        [5.94687653e-01, 2.32861016e-01, 4.17367997e-01],        [1.24405108e-01, 8.40582895e-01, 9.40752254e-01],        [4.25288036e-01, 3.80122702e-01, 2.28407752e-01],        [3.94055706e-01, 8.76141550e-01, 7.17604837e-01],        [6.67294100e-01, 8.23199876e-01, 4.36241428e-01],        [1.42685751e-01, 1.39508256e-01, 5.06792355e-01],        [9.20267645e-01, 8.37664382e-01, 4.47944036e-01],        [6.49710231e-01, 1.00572965e-01, 1.28260103e-01],        [1.28007186e-01, 4.38949338e-01, 8.89301891e-01],        [4.99460100e-01, 5.62477445e-01, 2.79474811e-01],        [2.17100105e-01, 6.89174282e-01, 1.05019362e-01],        [3.95088060e-01, 8.37934865e-01, 3.18907316e-01],        [7.59247284e-01, 1.54207130e-01, 5.88837141e-01],        [4.84251230e-01, 5.41883656e-01, 5.78460247e-01],        [1.74220980e-01, 2.17454702e-01, 5.24286011e-01],        [8.48744851e-01, 8.64756788e-01, 8.61676887e-01],        [9.17315123e-01, 6.65907715e-01, 3.48028846e-01],        [3.43878267e-02, 7.94429515e-01, 7.52465819e-01],        [6.97917295e-01, 6.09025812e-01, 5.95874170e-01],        [5.20360519e-01, 2.81685497e-01, 7.71780270e-01],        [4.60189655e-01, 1.32434518e-01, 5.26601184e-01],        [7.71332358e-01, 2.83647122e-02, 8.46388149e-01],        [5.69470848e-02, 7.51955534e-01, 6.19797095e-01],        [9.40113234e-01, 1.59565306e-01, 1.90748601e-01],        [4.16517083e-02, 5.99813722e-01, 9.81045856e-01],        [2.07776551e-01, 6.96446913e-01, 3.17957460e-01],        [9.50510245e-01, 9.82511740e-01, 7.96451715e-01],        [3.99328799e-01, 1.66822109e-01, 4.90948464e-01],        [2.77616067e-01, 6.12865234e-01, 6.21373030e-01],        [9.65652017e-01, 4.16562790e-01, 1.94374577e-01],        [7.64750741e-01, 1.89312950e-01, 6.37535755e-01],        [9.85940756e-01, 2.16348874e-01, 7.38481435e-01],        [4.67713608e-01, 6.92566638e-01, 3.37711062e-01],        [6.62599278e-01, 1.29149030e-01, 3.68618004e-01],        [4.50537991e-02, 6.43905462e-02, 9.77931165e-01],        [3.06576427e-01, 7.00119355e-01, 7.97637064e-01],        [4.19146957e-01, 7.03243918e-01, 9.69853080e-01],        [2.85238648e-02, 7.73635007e-01, 5.98486173e-02],        [8.38015272e-01, 5.96506289e-01, 2.36002306e-02],        [4.74268780e-01, 4.69743604e-01, 2.44673896e-01],        [5.38944719e-01, 2.51493693e-01, 3.27529135e-01],        [5.07534600e-01, 9.36244965e-02, 6.61688289e-01],        [1.44172397e-01, 7.65284284e-01, 5.73111726e-01],        [1.07725342e-01, 5.22074427e-01, 8.41729016e-01],        [7.65752488e-01, 9.93365737e-01, 5.93574127e-01],        [4.24386672e-01, 3.38234810e-01, 8.24510975e-02],        [5.87755884e-01, 5.97618669e-01, 9.59073593e-01],        [2.55609667e-01, 7.69166225e-01, 6.97422870e-01],        [3.03028475e-01, 7.67672440e-01, 9.09653721e-01],        [1.38938577e-01, 5.01414503e-01, 2.97532977e-01],        [4.83763381e-01, 7.33595493e-01, 1.18177504e-01],        [9.78535344e-01, 7.53975753e-01, 2.54995590e-01],        [5.79110819e-01, 4.32959088e-01, 6.57449467e-01],        [3.04761188e-02, 1.78197124e-01, 1.82679031e-01],        [5.39254133e-01, 6.87812190e-01, 9.32133632e-01],        [3.76451505e-01, 9.62596573e-01, 4.43423731e-01],        [2.93714209e-01, 7.97272138e-01, 2.09790113e-01],        [1.76368554e-01, 9.51513787e-01, 2.42606505e-01],        [1.61420213e-01, 6.28205277e-01, 2.75021987e-01],        [9.09964232e-02, 5.09888444e-01, 8.62688509e-01],        [2.08778544e-01, 5.12891664e-01, 8.73510326e-01],        [1.20071020e-02, 8.30704639e-01, 2.27690540e-01],        [2.22604942e-01, 9.44385708e-01, 3.71521833e-01],        [7.99835651e-01, 9.47289682e-01, 4.77308245e-02],        [9.06148329e-01, 9.24270324e-01, 2.10034638e-01],        [2.03128608e-01, 2.66010074e-01, 3.35853428e-01],        [5.53471212e-01, 1.00133255e-01, 7.85021536e-02],        [8.65400850e-02, 9.70685630e-02, 9.54525691e-02],        [3.86730818e-01, 6.94669003e-01, 8.47538196e-01],        [2.91404197e-02, 2.12556038e-01, 9.45848217e-01],        [1.01573518e-02, 3.65303336e-01, 1.52142056e-01],        [1.19328787e-02, 9.28085192e-01, 6.49803308e-01],        [2.45066351e-01, 4.30150565e-01, 6.77698357e-01],        [7.62404387e-01, 8.67693356e-01, 8.98118201e-01],        [1.09415695e-01, 8.11913570e-01, 4.69482472e-01],        [9.91191438e-01, 8.21776547e-01, 7.74143943e-01],        [7.77856308e-01, 4.08175227e-01, 7.89754352e-01],        [2.64021870e-01, 3.08542211e-01, 6.14662452e-01],        [1.08703782e-01, 7.58318236e-01, 8.16624872e-01],        [2.30397866e-01, 1.57439643e-01, 9.64243515e-01],        [5.61021307e-01, 3.50996342e-01, 9.95590970e-01],        [7.75654494e-01, 7.54268708e-01, 4.96767380e-01],        [6.14391735e-01, 6.04795949e-01, 4.41002649e-01],        [7.44398756e-01, 2.45093133e-03, 1.55063802e-01],        [5.14935338e-01, 2.68220504e-01, 2.93189364e-01],        [5.51005229e-01, 3.91559028e-01, 8.90291605e-01],        [5.59333520e-01, 2.47393835e-02, 4.38854459e-01],        [1.77646448e-02, 2.09710224e-01, 6.79384543e-01],        [9.99201204e-01, 6.63396338e-01, 2.54779696e-01],        [2.99921852e-01, 5.70954888e-01, 5.50165707e-01],        [4.58569475e-01, 5.87899595e-01, 6.87435697e-01],        [4.41071030e-01, 3.99223449e-01, 3.13072216e-01],        [1.39977294e-01, 7.81157385e-01, 1.65109356e-01],        [1.66917625e-01, 1.93610902e-01, 7.56560266e-01],        [8.83478347e-01, 9.83961364e-01, 5.96587537e-01],        [1.73455073e-01, 3.13520974e-01, 9.36422203e-01],        [8.13084059e-01, 5.23599575e-01, 5.99009071e-01],        [6.88586194e-02, 4.17600741e-01, 5.41957316e-01],        [7.42904727e-01, 4.29201944e-01, 7.06797182e-01],        [8.05169697e-01, 4.28142564e-01, 7.91825279e-01],        [3.52891400e-01, 5.41830554e-01, 1.47103447e-01],        [2.77946945e-01, 7.66452541e-01, 3.49983560e-01],        [4.00819157e-01, 4.83780808e-01, 3.99507426e-01],        [1.15210213e-01, 5.61368908e-02, 1.46406351e-01],        [9.86166188e-01, 3.45398947e-02, 5.66857574e-01],        [3.44399895e-01, 1.78777501e-01, 6.61600747e-01],        [2.51097186e-01, 1.27099208e-01, 2.41894734e-01],        [1.97701028e-01, 5.64344971e-01, 9.04437640e-01],        [9.90063780e-01, 6.60953736e-01, 9.80387101e-01],        [3.49703236e-01, 7.15088625e-02, 2.77438827e-01],        [3.68192688e-01, 2.28545721e-01, 6.19242426e-01],        [7.32341182e-01, 5.11691907e-01, 4.69946622e-01],        [4.76275759e-02, 7.97487153e-01, 2.06148241e-01],        [6.71522226e-02, 7.62113942e-01, 4.84101993e-01],        [6.58137991e-01, 8.24572259e-01, 4.82773104e-01],        [3.24609747e-01, 4.40729489e-01, 9.61018186e-01],        [6.37844146e-01, 1.73997584e-01, 6.09494858e-02],        [1.50138889e-01, 7.37693244e-02, 4.02968636e-01],        [4.66148970e-02, 6.48104179e-01, 7.22136800e-01],        [8.40649491e-01, 4.59768601e-01, 9.31176982e-01],        [1.54569385e-02, 2.96653278e-01, 6.61103382e-01],        [1.04119481e-01, 6.08817792e-01, 2.57713193e-01],        [1.84279112e-01, 9.39344775e-01, 3.77598847e-01],        [3.14128824e-01, 9.48938736e-01, 3.04874016e-01],        [3.48598628e-01, 9.27989183e-01, 7.07870363e-01],        [6.28852497e-01, 2.90206548e-01, 2.99829637e-02],        [6.67331559e-01, 9.75735485e-01, 3.00159851e-01],        [9.66917036e-01, 5.45310316e-02, 6.23266388e-01],        [1.64933322e-01, 2.96191997e-01, 7.82937714e-01],        [3.14539692e-01, 9.84164432e-01, 2.94497217e-01],        [4.36431987e-01, 6.65067771e-01, 5.89964217e-01],        [1.67831527e-01, 9.14363851e-01, 6.51613569e-01],        [9.18762606e-01, 3.33270789e-03, 8.51539646e-01],        [5.55835216e-01, 9.14247333e-01, 4.84301525e-01],        [5.83030218e-01, 1.59210991e-01, 6.30702881e-01],        [2.82588178e-01, 1.65421511e-01, 8.68583363e-01],        [9.34103563e-01, 9.50835760e-01, 2.82708323e-01],        [6.90345274e-01, 5.94087964e-01, 8.82227314e-01],        [7.50207678e-01, 9.10899068e-01, 8.97093255e-01],        [9.08526510e-01, 6.24834611e-01, 5.61718622e-01],        [6.56725107e-01, 4.76360560e-01, 2.98195025e-01],        [9.10305588e-01, 8.85091537e-01, 7.82422198e-01],        [6.69435785e-01, 4.74112186e-01, 2.22128649e-01],        [4.36317878e-01, 9.84339841e-01, 9.83051399e-01],        [6.92396779e-01, 6.70792886e-01, 7.83324946e-01],        [2.89339351e-01, 1.15653182e-01, 9.37088945e-02],        [6.11886488e-01, 2.72366775e-01, 3.70343670e-01],        [4.79491331e-01, 8.08027281e-01, 4.46321268e-02],        [2.48033253e-01, 9.83557829e-01, 5.24873060e-03],        [2.95460682e-01, 2.24568951e-01, 6.52506672e-02],        [2.35784922e-01, 1.63574387e-01, 5.79207557e-01],        [3.58270290e-01, 5.18926775e-01, 6.16088879e-01],        [8.92035442e-01, 7.85944980e-02, 2.40114690e-01],        [1.03335943e-01, 6.93357992e-01, 7.56194948e-01],        [8.91605333e-01, 8.92275251e-01, 2.04587221e-01],        [6.86003087e-01, 3.93101057e-01, 2.49885566e-01],        [5.42938804e-01, 6.70613403e-01, 4.59967107e-01],        [1.49588511e-01, 5.31799552e-01, 3.55989290e-01],        [6.93591252e-02, 1.96620758e-01, 6.71602391e-01],        [4.05994362e-02, 5.15524881e-01, 3.62263973e-01],        [8.29713198e-01, 8.55583297e-01, 9.61654997e-02],        [9.53878839e-01, 2.36521038e-01, 2.58519625e-01],        [5.15205015e-01, 7.96482586e-01, 9.01489084e-01],        [9.45234899e-01, 1.95329289e-01, 5.18838328e-01],        [2.66494927e-01, 1.58148635e-01, 3.05972891e-01],        [8.23885994e-01, 1.34748716e-01, 4.96198589e-01],        [6.69859848e-03, 4.77529370e-01, 5.46417379e-01],        [1.95322363e-01, 1.20483222e-01, 4.01412360e-01],        [9.81779440e-03, 7.97093540e-01, 5.51926796e-01],        [9.69146903e-01, 7.24135251e-01, 2.91948573e-01],        [5.00204472e-02, 8.58551430e-01, 3.61022231e-01],        [7.72103431e-01, 8.13454091e-01, 8.51259558e-01],        [2.06325925e-02, 9.25918035e-01, 6.04822710e-01],        [3.09094712e-01, 7.88891904e-01, 4.14032232e-01],        [8.71190578e-01, 8.70594696e-01, 1.02730001e-01],        [8.25403250e-01, 4.28413887e-01, 7.22904466e-01],        [1.78438102e-01, 1.52829437e-01, 8.76964335e-01],        [2.49573932e-01, 8.91447936e-01, 1.23325032e-01],        [2.20466817e-01, 6.51137867e-01, 4.37782600e-01],        [1.73823287e-01, 2.84465717e-01, 8.59469003e-01],        [3.60048677e-01, 2.42204493e-01, 5.08482371e-01],        [3.23247777e-01, 2.20788081e-01, 3.01284568e-01],        [9.33177747e-01, 4.34829280e-01, 2.07424044e-01],        [4.82201724e-01, 2.51441696e-01, 2.28508218e-02],        [3.98811528e-01, 9.91866292e-01, 9.16902778e-01],        [2.28767839e-01, 2.71857940e-01, 4.38963467e-01],        [7.94003097e-01, 1.15059445e-01, 3.23059211e-01],        [9.59134616e-01, 7.04772201e-01, 7.53923576e-01],        [4.68705006e-01, 4.46924197e-01, 4.80421045e-03],        [5.90100879e-01, 5.84158592e-01, 8.51268173e-01],        [6.70712863e-01, 9.22355425e-01, 5.16826625e-01],        [5.31666474e-01, 2.70804075e-01, 4.25454067e-01],        [9.53758957e-01, 2.27377255e-01, 2.82536143e-01],        [8.14901921e-01, 5.03872254e-01, 8.75963803e-01],        [9.74845295e-01, 7.22862365e-01, 1.90760191e-01],        [2.52851087e-01, 5.26920870e-01, 3.37793197e-03],        [2.82050048e-01, 1.96544465e-02, 2.09463034e-01],        [9.35577368e-01, 9.10047256e-02, 6.00630891e-01],        [8.59315360e-01, 9.70072899e-01, 6.07021418e-02],        [3.24603436e-01, 9.88660435e-01, 1.03760871e-02],        [8.27636232e-01, 7.48255898e-01, 8.66434807e-01],        [1.51228718e-01, 5.95017101e-01, 6.32439932e-01],        [2.88764308e-01, 7.39864336e-01, 5.14213758e-01],        [6.63545749e-01, 2.23190917e-01, 9.90076284e-02],        [5.31696089e-01, 4.06783829e-01, 4.68399237e-01],        [1.71664230e-01, 5.05625390e-01, 1.33735841e-01],        [3.07556239e-01, 8.71011013e-01, 5.67807741e-01],        [4.42163535e-01, 9.44063067e-01, 7.47495599e-01],        [1.48818781e-02, 5.80481041e-01, 2.53285631e-01],        [5.36335809e-01, 3.68693320e-01, 2.56224417e-01],        [8.58273479e-01, 6.51024932e-01, 1.86661993e-01],        [3.06819102e-01, 7.60185582e-01, 3.42956539e-01],        [2.22653131e-01, 2.77243902e-01, 7.46084398e-01],        [8.57587518e-01, 7.42853762e-01, 1.31807037e-01],        [8.15638290e-01, 8.61952807e-01, 1.42925604e-01],        [2.05640656e-01, 6.33810312e-01, 9.97664087e-02],        [7.35414255e-01, 3.18733375e-01, 6.10343312e-01],        [4.20390712e-02, 9.21535104e-01, 1.63981616e-01],        [1.91303686e-01, 1.75259072e-01, 9.94712473e-01],        [1.59610660e-01, 1.35567359e-01, 6.04388196e-01],        [7.06002222e-01, 3.79185960e-01, 7.22738850e-01],        [2.55986460e-01, 7.77310918e-01, 1.81514809e-01],        [7.14361201e-01, 7.18587281e-01, 2.38051907e-01],        [3.68983008e-01, 1.79509705e-02, 5.39606577e-01],        [5.06577017e-01, 5.02712669e-01, 7.22795155e-01],        [6.45611063e-01, 4.00215137e-01, 3.03880605e-01],        [9.02637461e-01, 6.40639729e-01, 8.57817782e-01],        [3.76334942e-01, 2.09974838e-01, 9.36290787e-01],        [4.92906166e-02, 4.77297886e-01, 7.77797875e-02],        [3.60495137e-01, 9.98695788e-01, 4.37664331e-01],        [1.03478593e-01, 8.88564202e-01, 5.40667169e-01],        [3.27503982e-01, 1.26910887e-02, 6.38740534e-01],        [3.86123463e-01, 7.45599786e-02, 8.27608733e-01],        [7.45454722e-01, 1.08153991e-01, 7.35063551e-01],        [2.60173608e-02, 7.98457887e-01, 7.92363776e-01],        [2.93715457e-01, 7.16201906e-01, 6.12659113e-01],        [7.28731766e-01, 1.51499297e-02, 2.79890251e-01],        [5.88466606e-01, 5.28238067e-01, 3.23802378e-01],        [9.91583537e-01, 8.94398543e-01, 7.08348359e-02],        [5.15016455e-01, 8.38944222e-01, 2.97154195e-01],        [7.88766773e-01, 9.71508068e-01, 4.90754411e-01],        [9.14424412e-01, 2.16665622e-01, 9.98648200e-01],        [2.68751827e-01, 6.49435524e-01, 8.28285096e-01],        [7.48585800e-01, 3.48600382e-01, 4.11365090e-01],        [8.32206036e-01, 5.70339913e-01, 2.23125445e-01],        [4.01693818e-01, 4.61637559e-02, 1.08897503e-01],        [7.17066111e-01, 7.92086297e-01, 7.44726311e-01],        [7.29333737e-01, 9.72150734e-01, 6.42281033e-01],        [8.81706826e-01, 9.84768479e-01, 2.45726122e-01],        [9.93132891e-01, 2.42385955e-01, 4.15011014e-01],        [6.95960441e-01, 2.06413557e-01, 9.58687131e-01],        [4.28751525e-01, 3.42819821e-01, 9.83936217e-01],        [9.59044999e-01, 3.26250020e-01, 2.59475331e-01],        [7.93008534e-01, 8.52037835e-01, 3.56809213e-01],        [3.92420729e-01, 5.55989053e-01, 4.63399427e-01],        [4.51887899e-01, 8.40482958e-01, 2.85685524e-01],        [8.18648595e-01, 6.65119162e-01, 9.09388471e-01],        [5.91752845e-01, 9.36606170e-04, 5.00508215e-01],        [3.51688990e-01, 9.60780852e-01, 7.08938472e-01],        [8.93024218e-01, 6.36981317e-01, 7.29011612e-01],        [7.33229234e-01, 2.55228428e-01, 1.28164126e-01],        [9.34837902e-01, 8.47478223e-01, 6.19779656e-01],        [4.32853739e-01, 4.17928680e-01, 2.37532005e-02],        [1.43042841e-01, 5.56877725e-02, 9.47156683e-01],        [3.69041584e-01, 2.45859593e-01, 9.05919485e-01],        [3.41645203e-01, 8.05144850e-01, 1.49046972e-02],        [3.99682481e-01, 1.02340613e-01, 7.43952490e-01],        [8.33000444e-01, 9.83890262e-01, 1.04081079e-01],        [5.79725511e-01, 2.71176431e-01, 3.21105030e-01],        [8.72665983e-01, 4.15011558e-01, 9.64432783e-01],        [2.02201126e-01, 3.87564552e-01, 3.15864931e-01],        [8.20113772e-01, 9.39815691e-01, 1.77756810e-01],        [8.74578149e-01, 7.33667201e-01, 8.55396186e-01],        [9.35023717e-01, 8.52754593e-01, 3.53438169e-01],        [2.10088848e-02, 6.37745020e-02, 3.39320385e-01],        [6.18981384e-01, 4.89543529e-01, 3.50186277e-02],        [1.67384841e-02, 5.17828159e-01, 4.40357930e-01],        [9.47200802e-01, 9.26812553e-01, 1.13817184e-01],        [5.93250958e-01, 7.37402211e-01, 6.07753378e-01],        [3.24927253e-01, 3.14128119e-02, 4.65204624e-01],        [6.29976252e-01, 5.63336631e-01, 9.61428914e-01],        [5.26835802e-01, 3.89778210e-01, 4.84331772e-01],        [9.56720742e-01, 6.31001691e-01, 4.18892872e-01],        [8.69998771e-01, 5.47708146e-01, 9.37588967e-01],        [5.14312282e-01, 4.18010833e-01, 6.95208665e-01],        [4.44286947e-01, 8.78722001e-01, 3.84996651e-01],        [3.36962272e-01, 2.40735860e-01, 6.26152547e-01],        [7.79319073e-01, 1.93299667e-02, 8.00252999e-01],        [1.66092573e-01, 9.34305328e-01, 9.61717298e-01],        [8.37310897e-01, 9.80758245e-01, 6.78176969e-01],        [2.43130401e-02, 5.94617276e-01, 6.56350143e-01],        [2.52001675e-01, 3.43445851e-01, 5.69303778e-01],        [4.02008869e-02, 5.87901050e-01, 4.19592251e-01],        [1.07183093e-01, 2.18551544e-01, 4.03145841e-01]])
abs_area(size)

Get the absolute area

abs_pos(frame_size)

Get a new BoundingBoxes2D Tensor with absolute position relative to the given frame_size.

Return type

BoundingBoxes2D

append_labels(labels, name=None)

Attach a set of labels to the boxes.

Parameters
labels: aloscene.Labels

Set of labels to attached to the frame

name: str

If none, the label will be attached without name (if possible). Otherwise if no other unnamed labels are attached to the frame, the labels will be added to the set of labels.

area()

Get the current boxes area. The area will be relative to the frame size if the boxes are in a relative state. Otherwise, the area will be absolute.

as_boxes(boxes)
static boxes2abspos(tensor, frame_size)

Get a new BoundingBoxes2D Tensor with absolute position relative to the given frame_size.

static boxes2relpos(tensor)

Get a new BoundingBoxes2D Tensor with relative position (between 0 and 1)

static boxes2xcyc(tensor)

Get a new BoundingBoxes2D Tensor with boxes following this format: [x_center, y_center, width, height]. Could be relative value (betwen 0 and 1) or absolute value based on the current Tensor representation.

static boxes2xyxy(tensor)
static boxes2yxyx(tensor)
static boxes_hflip(boxes)

Flip frame horizontally

fit_to_padded_size()

If the set of Boxes did not get padded by the pad operation, this method wil padd the boxes to the real padded size.

Returns
padded_boxes2d sa_tensor: aloscene.BoundingBoxes2D

padded_boxes2d BoundingBoxes2D

get_view(frame=None, size=None, labels_set=None, **kwargs)

Create a view of the boxes a frame

Parameters
frame: aloscene.Frame

Tensor of type Frame to display the boxes on. If the frameis None, a frame will be create on the fly.

size: (tuple)

(height, width) Desired size of the view. None by default

labels_set: str

If provided, the boxes will rely on this label set to display the boxes color. If labels_set is not provie while the boxes have multiple labels set, the boxes will be display with the same colors.

get_with_format(boxes_format)

Set boxes into the desired format (Inplace operation)

static giou(boxes1, boxes2)

Generalized IoU from https://giou.stanford.edu/ The boxes should be in [x0, y0, x1, y1] format Returns a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2)

Parameters
boxes1: aloscene.BoundingBoxes2D
boxes2: aloscene.BoundingBoxes2D
Returns
giou_tensor: torch.Tensor

Giou between each boxes

giou_with(boxes2)

Generalized IoU from https://giou.stanford.edu/ The boxes should be in [x0, y0, x1, y1] format Returns a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2)

Parameters
boxes2: aloscene.BoundingBoxes2D
Returns
giou_tensor: torch.Tensor

Giou between each boxes

static iou(boxes1, boxes2, ret_union=False)

Compute the IOU between the two set of boxes

Parameters
boxes1: aloscene.BoundingBoxes2D
boxes2: aloscene.BoundingBoxes2D
Returns
iou_tensor: torch.Tensor

IOU between each boxes

iou_with(boxes2, ret_union=False)

Compute the IOU between the two set of boxes

Parameters
boxes2: aloscene.BoundingBoxes2D
Returns
iou_tensor: torch.Tensor

IOU between each boxes

nms(scores, iou_threshold=0.5)

Perform NMS on the set of boxes. To be performed, the boxes one must passed a scores tensor.

Parameters
scores: torch.Tensor

Scores of each boxes to perform the NMS computation.

iou_threshold: float

NMS iou threshold

Returns
int64 tensor

The indices of the elements that have been kept by NMS, sorted in decreasing order of scores

rel_area()

Get the absolute area

rel_pos()

Get a new BoundingBoxes2D Tensor with absolute position relative to the given frame_size.

remove_padding()
xcyc()

Get a new BoundingBoxes2D Tensor with boxes following this format: [x_center, y_center, width, height]. Could be relative value (betwen 0 and 1) or absolute value based on the current Tensor representation.

xyxy()

Get a new BoundingBoxes2D Tensor with boxes following this format: [x1, y1, x2, y2]. Could be relative value (betwen 0 and 1) or absolute value based on the current Tensor representation.

yxyx()

Get a new BoundingBoxes2D Tensor with boxes following this format: [y1, x1, y1, x1]. Could be relative value (betwen 0 and 1) or absolute value based on the current Tensor representation.