BoundingBoxes3D¶
Bounding Boxes 3D Tensor of shape (n, 7) of which the last dimension is : [xc, yc, zc, Dx, Dy, Dz, heading]
Coordinate xc, yc, zc of boxes’ center
Boxes’ dimension Dx, Dy, Dz along the 3 axis
Heading is the orientation by rotating around vertical Y-axis.
With this coordinate system convention:
The X axis is positive to the right
The Y axis is positive downwards
The Z axis is positive forwards
Basic usage:
API¶
- class aloscene.bounding_boxes_3d.BoundingBoxes3D(x, labels: Optional[Union[dict, aloscene.labels.Labels]] = None, names=('N', None), *args, **kwargs)¶
Bases:
aloscene.tensors.augmented_tensor.AugmentedTensor
Bounding Boxes 3D Tensor of shape (n, 7) of which the last dimension is : [xc, yc, zc, Dx, Dy, Dz, heading]
Coordinate xc, yc, zc of boxes’ center
Boxes’ dimension Dx, Dy, Dz along the 3 axis
Heading is the orientation by rotating around Y-axis.
Coordinate system convention:
The X axis is positive to the right
The Y axis is positive downwards
The Z axis is positive forwards
- bev_boxes()¶
Return the bird eye view boxes of shape (n, 4).
The last dimension: (x, z, dx, dz, converted heading). Because XZ is in inversed order, converted heading = - heading
- Return type
- static boxes_3d_hflip(boxes, cam_extrinsic, **kwargs)¶
Flip boxes 3d horizontally
Bring boxes to camera refenrence frame using cam_extrinsic
Flip x coordinates
Rotate heading using Y-axis rotation of cam_extrinsic to get local heading w.r.t. camera. Then flip the heading and finally rotate local heading back to global heading
- Parameters
- boxesBoundingBoxes3D
shape (n, 7)
- cam_extrinsicTensor
Shape (4, 4) or (t, 4, 4) of which the first dimension is “T”
- Returns
- BoundingBoxes3D
flipped boungding boxes 3d of shape (n, 7)
- static get_enclosing_box_2d(boxes, cam_intrinsic, cam_extrinsic, frame_size, **kwargs)¶
Get the 2d box enclosing the 3d box on image plan
- Parameters
- boxesBoundingBoxes3D
Shape (n, 7)
- cam_intrinsicCameraIntrinsic
Shape (3, 4)
- cam_extrinsicCameraExtrinsic
Shape (4, 4)
- frame_sizetuple[int, int]
(H, W)
- Returns
- BoundingBoxes2D
Shape (n, 4). Format “xyxy” with absolute coordinates. This instance is populated with frame_size and the same labels as boxes.labels
- static get_vertices_3d(boxes)¶
Get 8 vertices for each boxes in x, y, z coordinates
- Parameters
- boxesBoundingBoxes3D
Shape (n, 7)
- Returns
- torch.Tensor
vertices in 3d Shape (n, 8, 3) for n boxes, 8 vertices, 3 coordinates [x, y, z]
- rtype
Tensor
..
- static get_vertices_3d_proj(boxes, cam_intrinsic, cam_extrinsic, include_vertice_behind_image_plan=True)¶
Get 8 vertices projected on image for each box 3d
- Parameters
- boxesBoundingBoxes3D
Shape (n, 7)
- cam_intrinsicaloscene.camera_calib.CameraIntrinsic
Shape (3, 4)
- cam_extrinsicCameraExtrinsic
Shape (4, 4)
- include_vertice_behind_image_planbool, optional
If True, returns all vertices from box behind the image plan (negative Z coordinates). If False, filter out those boxes By default True
- Returns
- Tensor
Shape (m, 8, 2) for n boxes, 8 vertices, 2 coordinates x, y in pixel
with m <= n
- rtype
Tensor
..
- get_view(frame, size=None, mode='3D', **kwargs)¶
Create a View instance from a Frame
- Parameters
- framealoscene.Frame
The Frame must contain cam_intrinsic and cam_extrinsic matrices
- sizetuple, optional
Desired size of the view, by default None.
- modestr, optional
View mode, either “3D” or “2D”, by default “3D”
- Returns
- View
- rtype
View
..
- static giou3d(boxes1, boxes2, enclosing_type='smallest', ret_iou3d=False)¶
Calculate GIoU 3D for 2 aligned sets of boxes in order
This function works only with boxes1 and boxes2 in CUDA device.
- Parameters
- boxes1BoundingBoxes3D or torch.Tensor
Shape (n, 7)
- boxes2BoundingBoxes3D or torch.Tensor
Shape (n, 7)
- enclosing_typestr, optional
- Choose the algorithm for finding enclosing box :
aligned # simple and naive. bad performance. fastest pca # approximated smallest box. slightly worse performance. smallest # [default]. brute force. smallest box. best performance. slowest
- ret_iou3dbool, optional
If True, return also IoU 3D, by default False
- Returns
- Tensor or tuple of (Tensor, Tensor)
GIoU 3D, of shape (n,) IoU 3D, of shape (n,) (if ret_iou3d True)
- rtype
Union
[Tensor
,Tuple
[Tensor
,Tensor
]] ..
- giou3d_with(boxes2, enclosing_type='smallest', ret_iou3d=False)¶
Calculate GIoU 3D for 2 aligned sets of boxes in order
This function works only with self and boxes2 in CUDA device.
- Parameters
- boxes2BoundingBoxes3D
Shape (n, 7)
- enclosing_typestr, optional
- Choose the algorithm for finding enclosing box :
aligned # simple and naive. bad performance. fastest pca # approximated smallest box. slightly worse performance. smallest # [default]. brute force. smallest box. best performance. slowest
- ret_iou3dbool, optional
If True, return also IoU 3D, by default False
- Returns
- Tensor or tuple of (Tensor, Tensor)
GIoU 3D, of shape (n,) IoU 3D, of shape (n,) (if ret_iou3d True)
- rtype
Union
[Tensor
,Tuple
[Tensor
,Tensor
]] ..
- static iou3d(boxes1, boxes2, ret_union=False)¶
Calculate IoU 3D for 2 aligned sets of boxes in order
This function works only with boxes1 and boxes2 in CUDA device.
- Parameters
- boxes1BoundingBoxes3D
Shape (n, 7)
- boxes2BoundingBoxes3D
Shape (n, 7)
- ret_unionbool, optional
If True, return also union volume, by default False
- Returns
- Tensor or tuple of (Tensor, Tensor)
IoU 3D, of shape (n,) Union volume, of shape (n,) (if ret_union True)
- rtype
Union
[Tensor
,Tuple
[Tensor
,Tensor
]] ..
- iou3d_with(boxes2, ret_union=False)¶
Calculate IoU 3D for 2 aligned sets of boxes in order
This function works only with self and boxes2 in CUDA device.
- Parameters
- boxes2BoundingBoxes3D
Shape (n, 7)
- ret_unionbool, optional
If True, return also union volume, by default False
- Returns
- Tensor or tuple of (Tensor, Tensor)
IoU 3D, of shape (n,) Union volume, of shape (n,) (if ret_union True)